

Date Planned ://	Daily Tutorial Sheet-5	Expected Duration : 90 Min	
Actual Date of Attempt : / /	Level-1	Exact Duration :	

61.	Which of	the foll	owing is	dienrone	rtionation	reaction	9
υ1.	which of	the foll	owing is	aisbroba	ruonauon	reaction	•

(A)
$$CaCO_3 + 2H^+ \longrightarrow Ca^{2+} + H_2O + CO_2$$
 (B) $2CrO_4^{2-} + 2H^+ \longrightarrow Cr_2O_7^{2-} + H_2O$

(C)
$$Cr_2O_7^{2-} + 2OH^- \longrightarrow 2CrO_4^{2-} + H_2O$$
 (D) $Cu_2O + 2H^+ \longrightarrow Cu + Cu^{2+} + H_2O$

62. In the following reaction,
$$3Br_2 + 6CO_3^{2-} + 3H_2O \longrightarrow 5Br^- + BrO_3^- + 6HCO_3^-$$

- (A) Bromine is oxidised and carbonate is reduced
- **(B)** Bromine is reduced and water is oxidised
- **(C)** Bromine is neither reduced nor oxidized
- **(D)** Bromine is both reduced and oxidised

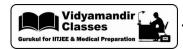
63. The conversion of sugar $C_{12}H_{22}O_{11} \longrightarrow CO_2$ is:

- (A) Oxidation (B) Reduction
- (C) Neither oxidation nor reduction (D) Both oxidation and reduction

- (A) F_2 (B) Cl_2 (C) Br_2 (D) I_2
- **65.** Of the four oxyacids of chlorine the strongest oxidising agent in dilute aqueous solution is:
 - (A) HClO_4 (B) HClO_3 (C) HClO_2 (D) HOCl
- *66. Which of the following behaves as both oxidising and reducing agents?
 - (A) H_2SO_3 (B) SO_2 (C) H_2S (D) HNO_3
- ***67.** Which of the following can act as reducing agent?
- (A) NaNO₂ (B) NaNO₃ (C) HI (D) SnCl₂
- ***68.** Which of the following can work as oxidising agent?
- (A) O_2 (B) $KMnO_4$ (C) H_2O_2 (D) H_2S
- **69.** The possible oxidation number of As are :

(A)
$$+ 2$$
 and $+ 3$ **(B)** $+ 3$ and $+ 5$

(C)
$$+ 3$$
 and $+ 4$ (D) None of these


70. The valency of Cr in the complex $[Cr(H_2O)_4Cl_2]^+$ is:

71. What is the equivalent mass of IO_4^- when it is converted into I_2 in acidic medium?

(A)
$$\frac{M}{6}$$
 (B) $\frac{M}{7}$ (C) $\frac{M}{5}$ (D) $\frac{M}{4}$

72. The equivalent weight of KIO_3 in the reaction $2Cr(OH)_3 + 4OH^- + KIO_3 \longrightarrow 2CrO_4^{2-} + 5H_2O + KI$ is:

(A) Mol. wt. (B)
$$\frac{\text{Mol. wt.}}{6}$$
 (C) $\frac{\text{Mol. wt.}}{2}$ (D) $\frac{\text{Mol. wt.}}{3}$

- 73. In alkaline medium, ClO_2 oxidises H_2O_2 to O_2 and is reduced to Cl^- , then how many mole of H_2O_2 will be oxidised by one mole of ClO_2 ?
 - **(A)** 1.0
- **(B)** 1.5
- **(C)** 2.5
- **(D)** 3.5
- **74.** MnO_4^{2-} (1 mole) in neutral aqueous medium disproportionates to :

- (A) $\frac{2}{3}$ mole of MnO₄ and $\frac{1}{3}$ mole of MnO₂ (B) $\frac{1}{3}$ mole of MnO₄ and $\frac{2}{3}$ mole of MnO₂
- (C) $\frac{1}{3}$ mole of Mn₂O₇ and $\frac{1}{3}$ mole of MnO₂ (D) $\frac{2}{3}$ mole of Mn₂O₇ and $\frac{1}{3}$ mole of MnO₂
- **75. Statement 1:** Equivalent weight of NH₃ in the reaction $N_2 + H_2 \longrightarrow NH_3$ is $\frac{17}{3}$ while that of N_2 is $\frac{28}{6}$.

Statement 2: Equivalent weight = $\frac{\text{Molecular weight}}{\text{number of } e^{-} \text{lost or gained}}$

- (A) Statement-1 is True, Statement-2 is True and Statement-2 is a correct explanation for Statement-1.
- **(B)** Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement-1.
- (C) Statement-1 is True, Statement-2 is False.
- **(D)** Statement-1 is False, Statement-2 is True.

VMC | Stoichiometry-II 158 DTS-5 | Level-1